Disclaimer: This primer is based on a review of available scientific research. The NCPA received no money and no input from any private company or government agency.
A Global Warming Primer

The purpose of this primer is to explore some of the main scientific, economic and political issues surrounding the topic of global warming.

Table of Contents

Part I: A Brief History of Global Warming 4

Part II: Consequences of Recent Warming 22

Part III: Responses to Future Warming 31

Source List ... 38
Greenhouse gases are a small part of the Earth’s atmosphere. However, they are critical to making the planet habitable—keeping the Earth from being a freezing rock in space like Mars.

Human activities, primarily the burning of fossil fuels for energy and deforestation, have contributed to an increase in greenhouse gases and many scientists believe this has caused the present warming trend.
Greenhouse gases make up no more than 2 percent of the Earth's atmosphere.
What Are the Greenhouse Gases in the Atmosphere?

CO₂ is a naturally occurring greenhouse gas. Humans and other animals emit CO₂ into the atmosphere when they exhale, and plants absorb it.

CO₂ and other trace gases are only 5 percent of the greenhouse gases in the atmosphere. Water vapor makes up the other 95 percent.
Humans contribute approximately 3.4 percent of annual CO$_2$ emissions. However, small increases in annual CO$_2$ emissions, whether from humans or any other source, can lead to a large CO$_2$ accumulation over time because CO$_2$ molecules can remain in the atmosphere for more than a century.
What Is the Human Share of the Greenhouse Effect?

- 95% Water Vapor
- 4.72% Ocean Biologic Activity, Volcanoes, Decaying Plants, Animal Activity, etc.
- 0.28% Human Contribution

Humanity is responsible for about one-quarter of 1 percent of the greenhouse effect.
There was an explosion of life forms 550 million years ago (Cambrian Period), when CO\(_2\) levels were 18 times higher than today. During the Jurassic Period, when the dinosaurs roamed the Earth, CO\(_2\) levels were as much as nine times higher than today.
How Has the Earth’s Temperature Changed over the Past 600 Million Years?

During the time dinosaurs roamed the Earth, the average temperature was about 18°F (10°C) warmer than it is today.
Over long periods of time, there is no close relationship between CO$_2$ levels and temperature.

Is There a Relationship Between CO$_2$ and Global Temperature over the Earth’s History?
How Has the Earth’s Temperature Changed over the Past 400,000 Years?

Over the past 400,000 years, there has been a series of ice ages lasting 100,000 years, on the average, interrupted by warm periods lasting about 10,000 years. During ice ages, the temperature drops by as much as 21°F, sea levels fall dramatically, glaciers expand and most living things are forced to migrate toward the equator. During periods of relative warmth, sea levels rise and glaciers retreat. We are currently at the tail end of a warm period.
For the past 400,000 years, temperature and CO₂ levels have varied together. However, the Earth’s temperature has consistently risen and fallen hundreds of years prior to increases and declines in CO₂ levels.
During Roman (Holocene) and medieval (MWP) times, the Earth was as warm as or warmer than it is today. A “little ice age” (LIA) began in the 1300s and ended in the mid-1800s.
CO₂ levels have been fairly constant for the last 10,000 years. Largely due to human activities, including the burning of fossil fuels and deforestation, CO₂ levels have risen approximately 35 percent since the beginning of the industrial revolution, with more than 80 percent of that rise occurring since 1950.

How Much Have CO₂ Levels Changed in Recent Times?
How Much of the Present Warming Was Caused by Increasing Levels of CO₂?

The Earth’s average temperature has risen approximately one degree Celsius over the past century. Although almost half of this warming occurred before 1940, greenhouse gas emissions began to rise substantially only after the 1950s. There has been no warming for the last 16 years.
China emits more CO$_2$ than any other country.

How Do America’s CO$_2$ Emissions Compare to China?
How Have CO₂ Emissions Changed in Recent Years?

CO₂ Emissions Since 1997

The United States has slowed the growth of its emissions far more than Europe—despite larger population growth and higher economic growth. Largely due to a nearly global recession, since 2005, CO₂ emissions have declined in both the U.S. and Europe.
Most reports focus on gross \(\text{CO}_2 \) emissions. However, as much as 40 percent of U.S. human \(\text{CO}_2 \) emissions are reabsorbed, primarily by vegetation.

How Much CO\(_2\) Does the United States Really Emit?

<table>
<thead>
<tr>
<th></th>
<th>Low Estimate</th>
<th>High Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Emissions</td>
<td>1,400</td>
<td>1,400</td>
</tr>
<tr>
<td>Net Emissions</td>
<td>1,000</td>
<td>800</td>
</tr>
<tr>
<td>Reabsorbed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

U.S. Human-Caused CO\(_2\) Emissions (millions of metric tons)
How Much Do We Know about the Causes of Global Temperature Change?

We know very little about 75 percent of the factors that scientists believe influence global temperature.
There are many climate change models used to predict global warming. This graph shows how the mid-range estimates of those models have changed over time.

Predicted Temperature Increases

- **1990 prediction**
- **1995 prediction**
- **2001 prediction**
- **2007 prediction**
- **1995 prediction**

How Good Are Climate Models at Predicting Global Warming?
Part II: Consequences of Recent Warming

Many scientists worry that global warming will cause droughts, floods, hurricanes of greater intensity, coastal flooding and the extinction of species that cannot adapt to change. So far, these effects are not evident.
Is Global Warming Causing Rising Sea Levels?

Sea levels have risen since the Earth began to come out of the last ice age. However, the rate of sea level rise since 1961, less than two-sixteenths of an inch annually, is far lower than the historic average.
While ice has melted at the edges and thinned in other locations on Greenland and Antarctica, much of their interiors have thickened due in part to increased annual snowpack. Estimates of the net effect range from ice gains to ice losses. At most, ice loss in the two regions since 1993 has contributed 0.8 mm to annual sea level rise per year—a rate that would total 3 inches by 2100.
Is Global Warming Killing Polar Bears?

Polar bear numbers increased dramatically from around 5,000 in the 1950s to as many as 25,000 today, higher than at any time in the 20th century.

Of the distinct polar bear populations worldwide, only two populations are decreasing. The majority of the populations are stable or increasing.
Neither the number nor the strength of hurricanes has increased outside the natural range of variability (category 1 is the lowest wind velocity and category 5 is the highest).
Is Global Warming Causing More Weather-Related Deaths?

Worldwide weather-related deaths have declined dramatically over the past eight decades.
Recent annual ice melt on Greenland has not exceeded historic natural variability.

Annual Greenland Ice Extent

Is Global Warming Causing Greater Ice Melt?
Natural variability has produced both more frequent and longer droughts in the past than we experience today, and more frequent years of high rainfall.
CO₂ is like plant food and most plants evolved at times when CO₂ levels were much higher than today. Laboratory results show that plants grow bigger and faster with increased levels of CO₂, and because of certain features of plant physiology, under high CO₂ conditions plants grow even faster when under stress from insufficient water supplies.
Part III: Responses to Future Warming

Even though there have been few visible consequences of global warming in the 20th century, the latest United Nations report projects increased coastal flooding (due to sea levels rising approximately 17 inches) and millions of additional cases of malaria (as mosquitoes breed at higher elevations) and hunger (due to increased drought).

Most laws and treaties proposed to prevent, reduce or slow global warming would be expensive and do little to prevent warming or future harms. For instance, the Kyoto Protocol, the international treaty designed to cut greenhouse gas emissions on average 7 percent below 1990 levels, would have cost approximately $165 billion, and the Waxman-Markey bill would reduce gross domestic product by $9.4 trillion by 2035. For a fraction of the cost, we could prevent much more harm and benefit many more people by adapting to a warmer world.
Can Waxman-Markey Stop Global Warming?

The Waxman-Markey bill is designed to reduce U.S. greenhouse gas emissions by 83% below their levels in 2005 by 2050. Even if the U.S. meets this emission target, the Earth would only be marginally cooler.
Meeting the Waxman-Markey bill’s target would mean reducing per capita CO₂ emissions to levels not seen since the 1860s, when people had no electricity, cars or planes, phones, televisions, radios, computers or other electronics.

What Would Waxman-Markey Mean for the Average Person?
Will Cutting CO₂ Emissions Reduce the Harms to Which Warming Contributes?

Focused adaptation means taking steps now to adapt to warmer conditions—such as using pesticides to kill malaria-bearing mosquitoes, improving farming practices and ending subsidies to coastal development. These measures could virtually eliminate the threat of coastal flooding and cut in half the number of people projected to be at risk from malaria and hunger.
At a cost of less than $10 billion annually, focused adaptation is relatively cheap.

Would Adapting to Climate Change Be Better than Trying to Prevent It?

Cost of Climate Change Policy

- Kyoto Protocol: $165 billion
- Stabilize CO₂ at 550 ppm: $7.5 trillion
- Focused Adaptation: $7.5 billion

National Center for Policy Analysis
How Would the Kyoto Protocol Affect Poor Countries?

Less-developed countries (which are not required to reduce CO₂ emissions) would suffer significant harm from the Kyoto Protocol due to loss of world trade and other economic impacts.
The Copenhagen Consensus, a panel of eight world-renowned economists (including three Nobel laureates), met in 2004 to discuss and prioritize proposals that address ten of the world’s greatest challenges and advance global welfare (see ranking below). The challenges, identified by the United Nations, included: civil conflicts; climate change; communicable diseases; education; financial stability; governance; hunger and malnutrition; migration; trade reform; and water and sanitation.

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Good</td>
<td></td>
</tr>
<tr>
<td>1 Diseases</td>
<td>Control of HIV/AIDS</td>
</tr>
<tr>
<td>2 Malnutrition</td>
<td>Providing micronutrients</td>
</tr>
<tr>
<td>3 Subsidies and Trade Barriers</td>
<td>Trade liberalization</td>
</tr>
<tr>
<td>4 Diseases</td>
<td>Control of malaria</td>
</tr>
<tr>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>5 Malnutrition</td>
<td>Development of new agricultural technologies</td>
</tr>
<tr>
<td>6 Water and Sanitation</td>
<td>Small-scale water technology for livelihoods</td>
</tr>
<tr>
<td>7 Water and Sanitation</td>
<td>Community-managed water supply and sanitation</td>
</tr>
<tr>
<td>8 Water and Sanitation</td>
<td>Research on water productivity in food production</td>
</tr>
<tr>
<td>9 Government</td>
<td>Lowering the cost of starting a new business</td>
</tr>
<tr>
<td>Fair</td>
<td></td>
</tr>
<tr>
<td>10 Migration</td>
<td>Lowering barriers to migration for skilled workers</td>
</tr>
<tr>
<td>11 Malnutrition</td>
<td>Improving infant and child nutrition</td>
</tr>
<tr>
<td>12 Malnutrition</td>
<td>Reducing the prevalence of low birth weight</td>
</tr>
<tr>
<td>13 Diseases</td>
<td>Scaled-up basic health services</td>
</tr>
<tr>
<td>Bad</td>
<td></td>
</tr>
<tr>
<td>14 Migration</td>
<td>Guest worker programs for the unskilled</td>
</tr>
<tr>
<td>15 Climate</td>
<td>Optimal carbon tax</td>
</tr>
<tr>
<td>16 Climate</td>
<td>The Kyoto Protocol</td>
</tr>
<tr>
<td>17 Climate</td>
<td>Value-at-risk carbon tax</td>
</tr>
</tbody>
</table>

How Do Scholars Rank the World’s Ills and Opportunities to Contain Them?
Source List

Graph/chart complete sources, by page number.

