

Critical Materials Strategy Critical Materials for Energy Security RARE EARTHS, CRITICAL METALS, ENERGY & NATIONAL SECURITY CONFERENCE

David Diamond, Ph.D. Office of Policy and International Affairs November 2, 2011

Outline of Briefing

- I. Critical Materials and Energy Security
- **II. DOE Critical Materials Strategy**
 - A. Scope and Context
 - **B.** Analysis
 - 1. Supply
 - 2. Demand
 - 3. Criticality
 - C. Program and Policy Directions
- III. Continuing Steps

"Energy Security can be described as *'the uninterrupted physical availability at a price which is affordable, while respecting environment concerns'.*" - International Energy Agency (IEA)

"[W]e must focus on ... the cutting edge of clean energy technology so that we can build a 21st century clean energy economy and win the future."

- Blueprint for a Secure Energy Future

March 2011

The mission of the Department of Energy is to *ensure America's security and prosperity* by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions.

Goal 1: Catalyze the *timely, material, and efficient transformation of the nation's energy system* and secure U.S. leadership in clean energy technologies.

Goal 2: Maintain a *vibrant U.S. effort in science and engineering as a cornerstone of our economic prosperity* with clear leadership in strategic areas.

- 2011 DOE Strategy

II. DOE Critical Materials Strategy

- A. Scope and Context
- **B.** Analysis
 - 1. Supply
 - 2. Demand
 - 3. Criticality
- **C. Program and Policy Directions**

Scope – 2010 Critical Materials Strategy

	1]																2
	Н																	Не
	Hydrogen 1.00794		-													-		Helium 4.003
	3	4											5	6	7	8	9	10
6	Li	Be											В	С	N	Ο	F	Ne
	6.941	Beryllium 9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	0xygen 15.9994	Fluorine 18.9984032	Neon 20.1797
	11	12											13	14	15	16	17	18
	Na	Mg											Al	Si	Р	S	Cl	Ar
	Sodium 22.989770	Magnesium 24.3050		_	_	_	_	-	_		_		Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39.948
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	Potassium 39.0983	Calcium 40.078	Scandium 44.955910	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938049	55.845	Cobalt 58.933200	Nickel 58.6934	Copper 63.546	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904	Krypton 83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	Rubidium 85.4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	Cesium 132.90545	Barium 137.327	Lanthanum 138.9055	Hafnium 178.49	Tantalum 180.9479	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.078	Gold 196.96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)	Radon (222)
(128)	87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Contraction of the	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
A State	Francium (223)	Radium (226)	Actinium (227)	Rutherfordium (261)	Dubnium (262)	Seaborgium (263)	Bohrium (262)	Hassium (265)	Meitnerium (266)	(269)	(272)	(277)						
					58	59	60	61	62	63	64	65	66	67	68	69	70	71

Vehicles Lighting Solar PV

Wind

March 2010 - Project launched

"I am today announcing that the Department of Energy will develop its first-ever strategic plan for addressing the role of rare earth and other strategic materials in clean energy technologies. "

"As a society, we have dealt with these types of issues before...We can and will do so again." David Sandalow

Assistant Secretary for Policy and International Affairs U.S. Department of Energy March 17, 2010

- June 2010 Responses to public Request for Information
- Summer 2010 Performed analysis, internal and inter-agency consultations, and drafted strategy
- December 2010 Public release of the Critical Materials Strategy
- Spring 2011 2nd public Request for Information issued
- Fall 2011 Release update of Critical Materials Strategy

- Diversify global supply chains
- Develop substitutes
- Reduce, reuse and recycle

Material supply chain with environmentally-sound processes

(1) Lynas Corp., (2) Molycorp Minerals, (3) (4) Great Western Minerals, (5) Alkane Resources, (6) Vietnamese govt./Toyota Tsusho/Sojitz, (7) Arafura Resources, (8) Avalon Rare Metals, (9) Kazatomprom/Sumitomo, (10) Stans Energy, (11) Greenland Minerals and Energy, (12) Rare Element Resources, (13) Pele Mountain Resources, (14) Quest Rare Metals, (15) Ucore Uranium, (16) US Rare Earths, (17) Matamec Explorations, (18) Etruscan Resources, (19) Montero Mining, (20) Tasman Metals, (21) Neo Material Technologies/Mitsubishi

Rare earth metals are not rare – found in many countries including the United States

Materials analyzed for clean energy are often lower revenue co-products or byproducts and may not drive production decisions

Material	Other Typical Extraction Products
Rare Earth Elements	Iron (Bautou mine)
(commonly found with thorium)	
Cobalt	Nickel and copper
Gallium	Aluminum and zinc
Indium	Zinc
Tellurium	Copper

Rare Earth Supply by Element: Production Sources and Volume (tonnes/yr)										
		Assumed Additional Production by 2015								
	Estimated 2010 Production	Mt. Weld (Australia)	Mountain Pass (USA)	Dubbo Zirconia (Australia)	Nolans Bore (Australia)	Dong Pao (Vietnam)	Hoidas Lake (Canada)	Nechalacho (Canada)	Additional Production by 2015	Estimated 2015 Production
Lanthanum	33,887	3,900	6,640	585	2,000	1,620	594	845	16,184	50,071
Cerium	49,935	7,650	9,820	1,101	4,820	2,520	1,368	2,070	29,349	79,284
Praseodymium	6,292	600	868	120	590	200	174	240	2,792	9,084
Neodymium	21,307	2,250	2,400	423	2,150	535	657	935	9,350	30,657
Samarium	2,666	270	160	75	240	45	87	175	1,052	3,718
Europium	592	60	20	3	40	0	18	20	161	753
Gadolinium	2,257	150	40	63	100	0	39	145	537	2,794
Terbium	252	15	0	9	10	0	3	90	127	379
Dysprosium	1,377	30	0	60	30	0	12	35	167	1,544
Yttrium	8,750	0	20	474	0	4	39	370	907	9,657
TOTAL	127,315	14,925	19,968	2,913	9,980	4,924	2,991	4,925	60,626	187,941

Sources: Kingsnorth, Roskill, and USGS

Supply of Other Elements Assessed: Production Sources and Volume (tonnes)								
	Estimated 2010	Potential Sour	Estimated					
	Production	Additional amount	Sources	2015 Supply				
Indium	1,345	267	Recovery (co-produced) from additional zinc production mainly and recycling	1,612				
Gallium	207	118 ⁷⁶	Recovery (co-produced) from additional alumina and bauxite production and recycling ⁷⁷	325				
Tellurium	500	720	Recovery (co-produced) from copper anode Slimes	1,220				
Cobalt	75,900	197,830	Mines	273,730				
Lithium (carbonate equivalent)	134,600	115,400	Mines ⁷⁸	250,000				

Sources: USGS 2008a-e and Evans 2010.

⁷⁶ For indium, the additional amount is only the difference between the 2010 production and the maximum current production capacity for mining and refining the material. No new capacity is projected by 2015.

⁷⁷ Based on multiple correspondences with USGS, October 4-7, 2010.

⁷⁸ USGS, external review of Critical Materials Strategy draft, November 17, 2010.

Material Demand Factors

	Market Penetration	Material Intensity
Trajectory D	High	High
Trajectory C	High	Low
Trajectory B	Low	High
Trajectory A	Low	Low

- Market Penetration = Deployment (total annual units of a clean energy technology) X Market Share (% of units using materials analyzed)
- *Material Intensity =* Material demand per unit of the clean energy technology

Low Technology Deployment Scenarios 2010 Strategy

IEA Energy

Technology

Perspectives

40

35

30

25

20

15

10

5

Electric Drive Vehicle Additions

ğ

IEA World Energy **Outlook**

2024

Global PV Additions

Wind Additions

Source: IEA estimated.

High Technology Deployment Scenarios 2010 Strategy

Million Vehicles

IEA Energy Technology Perspectives

Electric Drive Vehicle Additions

IEA World Energy **Outlook**

۶

Wind Additions

In In

Global CFL Demand

Global PV Additions

Material Intensity 2010 Strategy

Technology	Component	Material	High Intensity	Low Intensity	
Wind	Generators	Neodymium	186 kg/MW	124 kg/MW	
		Dysprosium	33 kg/MW	22 kg/MW	
Vehicles	Motors	Neodymium	0.62 kg/vehicle	0.31 kg/vehicle	
		Dysprosium	0.11 kg/vehicle	0.055 kg/vehicle	
	Li-ion Batteries	Lithium	5.1-12.7 kg/vehicle	1.4-3.4 kg/vehicle	
	(PHEVs and EVs)	Cobalt	9.4 kg/vehicle	0 kg/vehicle	
	NiMH Batteries	Rare Earths (Ce, La, Nd, Pr)	2.2 kg/vehicle	1.5 kg/vehicle	
	(HEVs)	Cobalt	0.66 kg/vehicle	0.44 kg/vehicle	
PV Cells	CIGS Thin Films	Indium	110 kg/MW	16.5 kg/MW	
		Gallium	20 kg/MW	4 kg/MW	
	CdTe Thin Films	Tellurium	145 kg/MW	43 kg/MW	
Lighting	Phosphors	Rare Earths (Y, Ce, La, Eu, Tb)	6715 metric tons* to 2010, 2.2% (low) or 3	otal demand in 3.5% (high) annually	

- Calculation methods differed by component based on available data
- *High Intensity = material intensity with current generation technology*
- Low Intensity = intensity with feasible improvements in material efficiency

*rare earth oxide equivalent

Supply Chain for Rare Earth Element Permanent Magnet Technologies

 Illustrates the supply chain for vehicle and wind turbine applications using Neodymium-Iron-Boron (NdFeB) permanent magnets

This Year's Rare Earth Price Volatility

Neodymium Oxides (Purity 99% min)

Source: Metal Pages

- Prices have been generally increasing over the past 10 years
- Prices have leveled off after rising dramatically over the past 18 months.

Clean energy's share of total material use currently small *...but could grow significantly with increased deployment.*

16% is for Clean Energy

62% is for Clean Energy

Neodymium Oxide Future Supply and Demand

Dysprosium Oxide Future Supply and Demand

Lithium Carbonate Future Supply and Demand

- Adapted from National Academy of Sciences methodology
- *Criticality* is a measure that combines
 - Importance to the clean energy economy
 - Clean Energy Demand; Substitutability Limitations
 - Risk of supply disruption
 - Basic Availability; Competing Technology Demand; Political, Regulatory and Social Factors; Co-Dependence on Other Markets; Producer Diversity
- Time frames:
 - Short-term (0-5 years)
 - Medium-term (5-15 years)

Importance to clean energy

Medium-Term Criticality

1 (low)

2010 Strategy

Neodymium Dysprosium 4 (high) Indium Lithium Europium Terbium Gallium Tellurium **Yttrium** 3 Cerium **Critical** 2 Cobalt Lanthanum **Near-critical** Praseodymium **Not Critical** Samarium (low)

2

3

4 (high)

Supply risk

Importance to clean energy

- Research and development
- Information-gathering
- Permitting for domestic production
- Financial assistance for domestic production and processing
- Stockpiles
- Recycling
- Education
- Diplomacy

Some are within DOE's core competence, others aren't

- DOE is the *nation's leading funder* of research on the physical sciences.
- Long history of materials work Ames Lab, EERE, Office of Science, ARPA-E

Advanced Research Projects Agency • ENERGY

Education and Workforce Training

- Develop the next generation of rare earth and critical materials experts through education and training
- Promote science, technology, engineering and math (STEM) training at all education levels

"Improving education in math and science is about producing engineers and researchers and scientists and innovators who are going to help transform our economy and our lives for the better."

President Barack Obama November 23, 2009

- Japan-US Workshop (Lawrence Livermore National Lab - Nov 18-19, 2010)
- Transatlantic Workshop (MIT Dec 3, 2010)
- ARPA-E Workshop (Ballston, VA Dec 6, 2010)
- US- Australia Joint Commission Meeting (DC – Feb 14, 2011)
- Trilateral R&D Workshop with Japan and EU (DC – Oct 4-5, 2011)

2010 Strategy Conclusions

• Some materials analyzed at risk of supply disruptions.

Five rare earth metals (dysprosium, neodymium, terbium, europium and yttrium) and indium assessed as most critical.

Clean energy's share of material use currently small

...but could grow significantly with increased deployment.

• Critical materials are often a small fraction of the total cost of clean energy technologies.

Demand does not respond quickly when prices increase.

• Data are sparse.

More information is required.

• Sound policies and strategic investments can reduce risk.

...especially in the medium and long term.

IV. Continuing Steps

- Develop an *integrated research plan,* building on three recent workshops.
- Strengthen *information-gathering capacity*.
- Analyze additional technologies .
- Continue to work closely with:
 - International partners
 - Interagency colleagues
 - Congress
 - Public stakeholders
- Update the strategy by the end of 2011.

- Technology Critical Material Content
- Supply Chain and Market Projections
- Financing and Purchase Transactions
- Research, Education and Training
- Energy Technology Transitions and Emerging Technologies
- Recycling Opportunities
- Mine and Processing Plant Permitting
- Additional Information

2012 Critical Materials Innovation Hub - \$20 million/year

- Seminar: Strategic Implications of Global Shortages of Critical Materials
- R&D Workshop Topics
 - Reducing Neodymium and Dysprosium Requirements for Permanent Magnets
 - Component and System-Level Substitutions for Rare Earth Materials
 - Materials and Processes for Environmentally Sound, Economical Separation of Rare Earths in Diverse Ore Bodies and Recycling Streams
 - Rare Earth Recycling Technologies and Optimization

- Led by the White House Office of Science and Technology Policy (OSTP), the group includes multiple departments and agencies
 - DOE, DOD, USGS, DOC, EPA, DOJ, DOS and USTR
- Initial focus
 - Critical mineral prioritization and early warning mechanism
 - R&D prioritization
 - Responsible development of global supply chains
 - Transparency of information (both geologic and market)

Critical Materials Strategy DOE welcomes comments

Comments and additional information can be sent to *materialstrategy@hq.doe.gov* 40